Stability of multi-solitons for the Benjamin-Ono equation
主 讲 人 :王忠 副教授
活动时间:12月22日09时00分
地 点 :腾讯会议:301-819-223
讲座内容:
In this talk, we report our work concerning stability of the multi-solitons of the Benjamin-Ono equation. By constructing a suitable Lyapunov functional, it is found that the multi-solitons are non-isolated constrained minimizers satisfying a suitable variational nonlocal elliptic equation, the stability issue is reduced to the spectral analysis of higher order nonlocal operators. The BO equation is more likely a two dimensional integrable system, its recursion operator is not explicit. The existence and uniqueness of multi-pole type solutions will be also presented for mass subcritical and supercritical cases. If time permits, I will discuss also some applications in showing the stability of multi-solitons for ILW equation.
主讲人介绍:
王忠,男,现为佛山大学副教授,硕士生导师,科学研究部副部长。中山大学基础数学专业博士,法国巴黎综合理工学院、图卢兹第三大学和意大利国际理论物理中心(ICTP)访问学者。研究方向为数学物理,主要研究非线性色散方程解的动力学行为和孤立子理论。现为美国《数学评论》评论员,广东省自然科学基金通讯评审专家。已主持青年科学基金项目1项,广东省自然科学基金面上项目2项和教育部科研项目2项。在CVPDE、Nonlinearity、JDE、Physica D和中国科学数学等期刊发表学术论文十余篇。是JLMS,JDE、Physica D、JPA和JMP等十余个数学物理期刊的审稿专家。